The optical identification of large number of X-ray sources such as those
from the ROSAT All-Sky Survey is challenging with conventional spectroscopic
follow-up observations. We investigate two ROSAT All-Sky Survey fields of size
10 * 10 degrees each, one at galactic latitude b = 83 deg (Com), the other at b
= -5 deg (Sge), in order to optically identify the majority of sources. We used
optical variability, among other more standard methods, as a means of
identifying a large number of ROSAT All-Sky Survey sources. All objects fainter
than about 12 mag and brighter than about 17 mag, in or near the error circle
of the ROSAT positions, were tested for optical variability on hundreds of
archival plates of the Sonneberg field patrol.
The present paper contains probable optical identifications of altogether 256
of the 370 ROSAT sources analysed. In particular, we found 126 AGN (some of
them may be misclassified CVs), 17 likely clusters of galaxies, 16 eruptive
double stars (mostly CVs), 43 chromospherically active stars, 65 stars brighter
than about 13 mag, 7 UV Cet stars, 3 semiregular resp. slow irregular variable
stars of late spectral type, 2 DA white dwarfs, 1 Am star, 1 supernova remnant
and 1 planetary nebula.
X-ray emission is, expectedly, tightly correlated with optical variability,
and thus our new method for optically identifying X-ray sources is demonstrated
to be feasible.Comment: 92 pages, 521 figures, A&A (accepted