research

Gating of high-mobility InAs metamorphic heterostructures

Abstract

We investigate the performance of gate-defined devices fabricated on high mobility InAs metamorphic heterostructures. We find that heterostructures capped with In0.75_{0.75}Ga0.25_{0.25}As often show signs of parallel conduction due to proximity of their surface Fermi level to the conduction band minimum. Here, we introduce a technique that can be used to estimate the density of this surface charge that involves cool-downs from room temperature under gate bias. We have been able to remove the parallel conduction under high positive bias, but achieving full depletion has proven difficult. We find that by using In0.75_{0.75}Al0.25_{0.25}As as the barrier without an In0.75_{0.75}Ga0.25_{0.25}As capping, a drastic reduction in parallel conduction can be achieved. Our studies show that this does not change the transport properties of the quantum well significantly. We achieved full depletion in InAlAs capped heterostructures with non-hysteretic gating response suitable for fabrication of gate-defined mesoscopic devices

    Similar works

    Full text

    thumbnail-image

    Available Versions