We present SimLex-999, a gold standard resource for evaluating distributional
semantic models that improves on existing resources in several important ways.
First, in contrast to gold standards such as WordSim-353 and MEN, it explicitly
quantifies similarity rather than association or relatedness, so that pairs of
entities that are associated but not actually similar [Freud, psychology] have
a low rating. We show that, via this focus on similarity, SimLex-999
incentivizes the development of models with a different, and arguably wider
range of applications than those which reflect conceptual association. Second,
SimLex-999 contains a range of concrete and abstract adjective, noun and verb
pairs, together with an independent rating of concreteness and (free)
association strength for each pair. This diversity enables fine-grained
analyses of the performance of models on concepts of different types, and
consequently greater insight into how architectures can be improved. Further,
unlike existing gold standard evaluations, for which automatic approaches have
reached or surpassed the inter-annotator agreement ceiling, state-of-the-art
models perform well below this ceiling on SimLex-999. There is therefore plenty
of scope for SimLex-999 to quantify future improvements to distributional
semantic models, guiding the development of the next generation of
representation-learning architectures