research

Criticality in Translation-Invariant Parafermion Chains

Abstract

In this work we numerically study critical phases in translation-invariant ZN\mathbb{Z}_N parafermion chains with both nearest- and next-nearest-neighbor hopping terms. The model can be mapped to a ZN\mathbb{Z}_N spin model with nearest-neighbor couplings via a generalized Jordan-Wigner transformation and translation invariance ensures that the spin model is always self-dual. We first study the low-energy spectrum of chains with only nearest-neighbor coupling, which are mapped onto standard self-dual ZN\mathbb{Z}_N clock models. For 3N63\leq N\leq 6 we match the numerical results to the known conformal field theory(CFT) identification. We then analyze in detail the phase diagram of a N=3N=3 chain with both nearest and next-nearest neighbor hopping and six critical phases with central charges being 4/54/5, 1 or 2 are found. We find continuous phase transitions between c=1c=1 and c=2c=2 phases, while the phase transition between c=4/5c=4/5 and c=1c=1 is conjectured to be of Kosterlitz-Thouless type.Comment: published versio

    Similar works

    Full text

    thumbnail-image

    Available Versions