Reassessing the sensitivity to leptonic CP violation


We address the validity of the usual procedure to determine the sensitivity of neutrino oscillation experiments to CP violation. An explicit calibration of the test statistic is performed through Monte Carlo simulations for several experimental setups. We find that significant deviations from a χ2\chi^2 distribution with one degree of freedom occur for experimental setups with low sensitivity to δ\delta. In particular, when the allowed region to which δ\delta is constrained at a given confidence level is comparable to the whole allowed range, the cyclic nature of the variable manifests and the premises of Wilk's theorem are violated. This leads to values of the test statistic significantly lower than a χ2\chi^2 distribution at that confidence level. On the other hand, for facilities which can place better constraints on δ\delta the cyclic nature of the variable is hidden and, as the potential of the facility improves, the values of the test statistics first become slightly higher than and then approach asymptotically a χ2\chi^2 distribution. The role of sign degeneracies is also discussed.Comment: 14 pages, 5 figures, RevTeX4. The discussion of the results has been improved and considerably extended. Version accepted for publication in JHE

    Similar works

    Full text


    Available Versions

    Last time updated on 05/06/2019