Stochastic switched systems are a relevant class of stochastic hybrid systems
with probabilistic evolution over a continuous domain and control-dependent
discrete dynamics over a finite set of modes. In the past few years several
different techniques have been developed to assist in the stability analysis of
stochastic switched systems. However, more complex and challenging objectives
related to the verification of and the controller synthesis for logic
specifications have not been formally investigated for this class of systems as
of yet. With logic specifications we mean properties expressed as formulae in
linear temporal logic or as automata on infinite strings. This paper addresses
these complex objectives by constructively deriving approximately equivalent
(bisimilar) symbolic models of stochastic switched systems. More precisely,
this paper provides two different symbolic abstraction techniques: one requires
state space discretization, but the other one does not require any space
discretization which can be potentially more efficient than the first one when
dealing with higher dimensional stochastic switched systems. Both techniques
provide finite symbolic models that are approximately bisimilar to stochastic
switched systems under some stability assumptions on the concrete model. This
allows formally synthesizing controllers (switching signals) that are valid for
the concrete system over the finite symbolic model, by means of mature
automata-theoretic techniques in the literature. The effectiveness of the
results are illustrated by synthesizing switching signals enforcing logic
specifications for two case studies including temperature control of a six-room
building.Comment: 25 pages, 4 figures. arXiv admin note: text overlap with
arXiv:1302.386