research

Demazure roots and spherical varieties: the example of horizontal SL(2)-actions

Abstract

Let GG be a connected reductive group, and let XX be an affine GG-spherical variety. We show that the classification of Ga\mathbb{G}_{a}-actions on XX normalized by GG can be reduced to the description of quasi-affine homogeneous spaces under the action of a semi-direct product GaG\mathbb{G}_{a}\rtimes G with the following property. The induced GG-action is spherical and the complement of the open orbit is either empty or a GG-orbit of codimension one. These homogeneous spaces are parametrized by a subset Rt(X){\rm Rt}(X) of the character lattice X(G)\mathbb{X}(G) of GG, which we call the set of Demazure roots of XX. We give a complete description of the set Rt(X){\rm Rt}(X) when GG is a semi-direct product of SL2{\rm SL}_{2} and an algebraic torus; we show particularly that Rt(X){\rm Rt}(X) can be obtained explicitly as the intersection of a finite union of polyhedra in QZX(G)\mathbb{Q}\otimes_{\mathbb{Z}}\mathbb{X}(G) and a sublattice of X(G)\mathbb{X}(G). We conjecture that Rt(X){\rm Rt}(X) can be described in a similar combinatorial way for an arbitrary affine spherical variety XX.Comment: Added Section 4; modified main result, Theorem 5.18 now; other change

    Similar works