Radio-frequency (RF) impairments, that exist intimately in wireless
communications systems, can severely degrade the performance of traditional
multiple-input multiple-output (MIMO) systems. Although compensation schemes
can cancel out part of these RF impairments, there still remains a certain
amount of impairments. These residual impairments have fundamental impact on
the MIMO system performance. However, most of the previous works have neglected
this factor. In this paper, a training-based MIMO system with residual transmit
RF impairments (RTRI) is considered. In particular, we derive a new channel
estimator for the proposed model, and find that RTRI can create an irreducible
estimation error floor. Moreover, we show that, in the presence of RTRI, the
optimal training sequence length can be larger than the number of transmit
antennas, especially in the low and high signal-to-noise ratio (SNR) regimes.
An increase in the proposed approximated achievable rate is also observed by
adopting the optimal training sequence length. When the training and data
symbol powers are required to be equal, we demonstrate that, at high SNRs,
systems with RTRI demand more training, whereas at low SNRs, such demands are
nearly the same for all practical levels of RTRI.Comment: Accepted for publication at the IEEE International Conference on
Communications (ICC 2014), 6 pages, 5 figure