We introduce a model for bidirectional retrieval of images and sentences
through a multi-modal embedding of visual and natural language data. Unlike
previous models that directly map images or sentences into a common embedding
space, our model works on a finer level and embeds fragments of images
(objects) and fragments of sentences (typed dependency tree relations) into a
common space. In addition to a ranking objective seen in previous work, this
allows us to add a new fragment alignment objective that learns to directly
associate these fragments across modalities. Extensive experimental evaluation
shows that reasoning on both the global level of images and sentences and the
finer level of their respective fragments significantly improves performance on
image-sentence retrieval tasks. Additionally, our model provides interpretable
predictions since the inferred inter-modal fragment alignment is explicit