From Hybrid to Quadratic Inflation With High-Scale Supersymmetry Breaking


Motivated by the reported discovery of inflationary gravity waves by the BICEP2 experiment, we propose an inflationary scenario in supergravity, based on the standard superpotential used in hybrid inflation. The new model yields a tensor-to-scalar ratio r ~ 0.14 and scalar spectral index ns ~ 0.964, corresponding to quadratic (chaotic) inflation. The important new ingredients are the high-scale, (1.6-10) x 10^13 GeV, soft supersymmetry breaking mass for the gauge singlet inflaton field and a shift symmetry imposed on the K\"ahler potential. The end of inflation is accompanied, as in the earlier hybrid inflation models, by the breaking of a gauge symmetry at (1.2-7.1) x 10^16 GeV, comparable to the grand-unification scale.Comment: Version with minor corrections to appear in PL

    Similar works