Although it is widely accepted that classical information cannot travel
faster than the speed of light in vacuum, the behavior of quantum correlations
and quantum information propagating through actively-pumped fast-light media
has not been studied in detail. To investigate this behavior, we send one half
of an entangled state of light through a gain-assisted fast-light medium and
detect the remaining quantum correlations. We show that the quantum
correlations can be advanced by a small fraction of the correlation time while
the entanglement is preserved even in the presence of noise added by
phase-insensitive gain. Additionally, although we observe an advance of the
peak of the quantum mutual information between the modes, we find that the
degradation of the mutual information due to the added noise appears to prevent
an advancement of the leading edge. In contrast, we show that both the leading
and trailing edges of the mutual information in a slow-light system can be
significantly delayed