research

Extending Higgs Inflation with TeV Scale New Physics

Abstract

Higgs inflation is among the most economical and predictive inflation models, although the original Higgs inflation requires tuning the Higgs or top mass away from its current experimental value by more than 2Οƒ2\sigma deviations, and generally gives a negligible tensor-to-scalar ratio r∼10βˆ’3r \sim 10^{-3} (if away from the vicinity of critical point). In this work, we construct a minimal extension of Higgs inflation, by adding only two new weak-singlet particles at TeV scale, a vector-quark TT and a real scalar SS. The presence of singlets (T,S)(T, S) significantly impact the renormalization group running of the Higgs boson self-coupling. With this, our model provides a wider range of the tensor-to-scalar ratio r=O(0.1βˆ’10βˆ’3)r = O(0.1 - 10^{-3}), consistent with the favored rr values by either BICEP2 or Planck data, while keeping the successful prediction of the spectral index ns≃0.96 n_s \simeq 0.96 . It further allows the Higgs and top masses to fully fit the collider measurements. We also discuss implications for searching the predicted TeV-scale vector-quark TT and scalar SS at the LHC and future high energy pp colliders.Comment: 20pp, to match JCAP Final Versio

    Similar works