The stability of statistical analysis is an important indicator for
reproducibility, which is one main principle of scientific method. It entails
that similar statistical conclusions can be reached based on independent
samples from the same underlying population. In this paper, we introduce a
general measure of classification instability (CIS) to quantify the sampling
variability of the prediction made by a classification method. Interestingly,
the asymptotic CIS of any weighted nearest neighbor classifier turns out to be
proportional to the Euclidean norm of its weight vector. Based on this concise
form, we propose a stabilized nearest neighbor (SNN) classifier, which
distinguishes itself from other nearest neighbor classifiers, by taking the
stability into consideration. In theory, we prove that SNN attains the minimax
optimal convergence rate in risk, and a sharp convergence rate in CIS. The
latter rate result is established for general plug-in classifiers under a
low-noise condition. Extensive simulated and real examples demonstrate that SNN
achieves a considerable improvement in CIS over existing nearest neighbor
classifiers, with comparable classification accuracy. We implement the
algorithm in a publicly available R package snn.Comment: 48 Pages, 11 Figures. To Appear in JASA--T&