research

Asymptotic linear bounds of Castelnuovo-Mumford regularity in multigraded modules

Abstract

Let AA be a Noetherian standard N\mathbb{N}-graded algebra over an Artinian local ring A0A_0. Let I1,…,ItI_1,\ldots,I_t be homogeneous ideals of AA and MM a finitely generated N\mathbb{N}-graded AA-module. We prove that there exist two integers kk and kβ€²k' such that \mathrm{reg}(I_1^{n_1} \cdots I_t^{n_t} M) \leq (n_1 + \cdots + n_t) k + k' \quad\mbox{for all }~n_1,\ldots,n_t \in \mathbb{N}. Comment: 9 page

    Similar works

    Full text

    thumbnail-image