We present a quantumly-enhanced protocol to achieve unconditionally secure
delegated classical computation where the client and the server have both
limited classical and quantum computing capacity. We prove the same task cannot
be achieved using only classical protocols. This extends the work of Anders and
Browne on the computational power of correlations to a security setting.
Concretely, we present how a client with access to a non-universal classical
gate such as a parity gate could achieve unconditionally secure delegated
universal classical computation by exploiting minimal quantum gadgets. In
particular, unlike the universal blind quantum computing protocols, the
restriction of the task to classical computing removes the need for a full
universal quantum machine on the side of the server and makes these new
protocols readily implementable with the currently available quantum technology
in the lab