Data center applications require the network to be scalable and
bandwidth-rich. Current data center network architectures often use rigid
topologies to increase network bandwidth. A major limitation is that they can
hardly support incremental network growth. Recent work proposes to use random
interconnects to provide growth flexibility. However routing on a random
topology suffers from control and data plane scalability problems, because
routing decisions require global information and forwarding state cannot be
aggregated. In this paper we design a novel flexible data center network
architecture, Space Shuffle (S2), which applies greedy routing on multiple ring
spaces to achieve high-throughput, scalability, and flexibility. The proposed
greedy routing protocol of S2 effectively exploits the path diversity of
densely connected topologies and enables key-based routing. Extensive
experimental studies show that S2 provides high bisectional bandwidth and
throughput, near-optimal routing path lengths, extremely small forwarding
state, fairness among concurrent data flows, and resiliency to network
failures