research

Cauchy's functional equation and extensions: Goldie's equation and inequality, the Go{\l}\k{a}b-Schinzel equation and Beurling's equation

Abstract

The Cauchy functional equation is not only the most important single functional equation, it is also central to regular variation. Classical Karamata regular variation involves a functional equation and inequality due to Goldie; we study this, and its counterpart in Beurling regular variation, together with the related Go{\l}\k{a}b-Schinzel equation.Comment: Companion paper to: Additivity, subadditivity and linearity: automatic continuity and quantifier weakenin

    Similar works