The concept of positional information is central to our understanding of how
cells in a multicellular structure determine their developmental fates.
Nevertheless, positional information has neither been defined mathematically
nor quantified in a principled way. Here we provide an information-theoretic
definition in the context of developmental gene expression patterns and examine
which features of expression patterns increase or decrease positional
information. We connect positional information with the concept of positional
error and develop tools to directly measure information and error from
experimental data. We illustrate our framework for the case of gap gene
expression patterns in the early Drosophila embryo and show how information
that is distributed among only four genes is sufficient to determine
developmental fates with single cell resolution. Our approach can be
generalized to a variety of different model systems; procedures and examples
are discussed in detail