research

Trade-offs between Selection Complexity and Performance when Searching the Plane without Communication

Abstract

We consider the ANTS problem [Feinerman et al.] in which a group of agents collaboratively search for a target in a two-dimensional plane. Because this problem is inspired by the behavior of biological species, we argue that in addition to studying the {\em time complexity} of solutions it is also important to study the {\em selection complexity}, a measure of how likely a given algorithmic strategy is to arise in nature due to selective pressures. In more detail, we propose a new selection complexity metric χ\chi, defined for algorithm A{\cal A} such that χ(A)=b+log\chi({\cal A}) = b + \log \ell, where bb is the number of memory bits used by each agent and \ell bounds the fineness of available probabilities (agents use probabilities of at least 1/21/2^\ell). In this paper, we study the trade-off between the standard performance metric of speed-up, which measures how the expected time to find the target improves with nn, and our new selection metric. In particular, consider nn agents searching for a treasure located at (unknown) distance DD from the origin (where nn is sub-exponential in DD). For this problem, we identify loglogD\log \log D as a crucial threshold for our selection complexity metric. We first prove a new upper bound that achieves a near-optimal speed-up of (D2/n+D)2O()(D^2/n +D) \cdot 2^{O(\ell)} for χ(A)3loglogD+O(1)\chi({\cal A}) \leq 3 \log \log D + O(1). In particular, for O(1)\ell \in O(1), the speed-up is asymptotically optimal. By comparison, the existing results for this problem [Feinerman et al.] that achieve similar speed-up require χ(A)=Ω(logD)\chi({\cal A}) = \Omega(\log D). We then show that this threshold is tight by describing a lower bound showing that if χ(A)<loglogDω(1)\chi({\cal A}) < \log \log D - \omega(1), then with high probability the target is not found within D2o(1)D^{2-o(1)} moves per agent. Hence, there is a sizable gap to the straightforward Ω(D2/n+D)\Omega(D^2/n + D) lower bound in this setting.Comment: appears in PODC 201

    Similar works