We have spatially resolved five debris disks (HD 30447, HD 35841, HD 141943,
HD 191089, and HD 202917) for the first time in near-infrared scattered light
by reanalyzing archival Hubble Space Telescope (HST)/NICMOS coronagraphic
images obtained between 1999 and 2006. One of these disks (HD 202917) was
previously resolved at visible wavelengths using HST/Advanced Camera for
Surveys. To obtain these new disk images, we performed advanced point-spread
function subtraction based on the Karhunen-Loeve Image Projection (KLIP)
algorithm on recently reprocessed NICMOS data with improved detector artifact
removal (Legacy Archive PSF Library And Circumstellar Environments Legacy
program). Three of the disks (HD 30447, HD 35841, and HD 141943) appear
edge-on, while the other two (HD 191089 and HD 202917) appear inclined. The
inclined disks have been sculpted into rings; in particular, the disk around HD
202917 exhibits strong asymmetries. All five host stars are young (8-40 Myr),
nearby (40-100 pc) F and G stars, and one (HD 141943) is a close analog to the
young sun during the epoch of terrestrial planet formation. Our discoveries
increase the number of debris disks resolved in scattered light from 19 to 23
(a 21% increase). Given their youth, proximity, and brightness (V = 7.2 to
8.5), these targets are excellent candidates for follow-up investigations of
planet formation at visible wavelengths using the HST/STIS coronagraph, at
near-infrared wavelengths with the Gemini Planet Imager (GPI) and Very Large
Telescope (VLT)/SPHERE, and at thermal infrared wavelengths with the James Webb
Space Telescope NIRCam and MIRI coronagraphs.Comment: 6 pages, 1 figure, 1 tabl