We present a method to leverage radical for learning Chinese character
embedding. Radical is a semantic and phonetic component of Chinese character.
It plays an important role as characters with the same radical usually have
similar semantic meaning and grammatical usage. However, existing Chinese
processing algorithms typically regard word or character as the basic unit but
ignore the crucial radical information. In this paper, we fill this gap by
leveraging radical for learning continuous representation of Chinese character.
We develop a dedicated neural architecture to effectively learn character
embedding and apply it on Chinese character similarity judgement and Chinese
word segmentation. Experiment results show that our radical-enhanced method
outperforms existing embedding learning algorithms on both tasks.Comment: 8 pages, 4 figure