We show that the set of homomorphisms between two supersolvable groups can be
locally list decoded up to the minimum distance of the code, extending the
results of Dinur et al who studied the case where the groups are abelian.
Moreover, when specialized to the abelian case, our proof is more streamlined
and gives a better constant in the exponent of the list size. The constant is
improved from about 3.5 million to 105.Comment: 11 page