We outline an approach to endow a plain vanilla material with topological
properties by creating topological bands in stacks of manifestly nontopological
atomically thin materials. The approach is illustrated with a model system
comprised of graphene stacked atop hexagonal-boron-nitride. In this case, the
Berry curvature of the electron Bloch bands is highly sensitive to the stacking
configuration. As a result, electron topology can be controlled by crystal axes
alignment, granting a practical route to designer topological materials. Berry
curvature manifests itself in transport via the valley Hall effect and
long-range chargeless valley currents. The non-local electrical response
mediated by such currents provides diagnostics for band topology