research

Structure and composition of the superconducting phase in alkali iron selenide Ky_yFe1.6+x_{1.6+x}Se2_2

Abstract

We use neutron diffraction to study the temperature evolution of the average structure and local lattice distortions in insulating and superconducting potassium iron selenide Ky_yFe1.6+x_{1.6+x}Se2_2. In the high temperature paramagnetic state, both materials have a single phase with crystal structure similar to that of the BaFe2_2As2_2 family of iron pnictides. While the insulating Ky_yFe1.6+x_{1.6+x}Se2_2 forms a 5×5\sqrt{5}\times\sqrt{5} iron vacancy ordered block antiferromagnetic (AF) structure at low-temperature, the superconducting compounds spontaneously phase separate into an insulating part with 5×5\sqrt{5}\times\sqrt{5} iron vacancy order and a superconducting phase with chemical composition of Kz_zFe2_{2}Se2_2 and BaFe2_2As2_2 structure. Therefore, superconductivity in alkaline iron selenides arises from alkali deficient Kz_zFe2_{2}Se2_2 in the matrix of the insulating block AF phase.Comment: 10 pages, 5 figure

    Similar works