Spatially entangled twin photons provide both promising resources for modern
quantum information protocols, because of the high dimensionality of transverse
entanglement, and a test of the Einstein-Podolsky-Rosen(EPR) paradox in its
original form of position versus impulsion. Usually, photons in temporal
coincidence are selected and their positions recorded, resulting in a priori
assumptions on their spatio-temporal behavior. Here, we record on two separate
electron-multiplying charge coupled devices (EMCCD) cameras twin images of the
entire flux of spontaneous down-conversion. This ensures a strict equivalence
between the subsystems corresponding to the detection of either position (image
or near-field plane) or momentum (Fourier or far-field plane). We report then
highest degree of paradox ever reported and show that this degree corresponds
to the number of independent degrees of freedom or resolution cells, of the
images