Adaptive indexing is a concept that considers index creation in databases as
a by-product of query processing; as opposed to traditional full index creation
where the indexing effort is performed up front before answering any queries.
Adaptive indexing has received a considerable amount of attention, and several
algorithms have been proposed over the past few years; including a recent
experimental study comparing a large number of existing methods. Until now,
however, most adaptive indexing algorithms have been designed single-threaded,
yet with multi-core systems already well established, the idea of designing
parallel algorithms for adaptive indexing is very natural. In this regard only
one parallel algorithm for adaptive indexing has recently appeared in the
literature: The parallel version of standard cracking. In this paper we
describe three alternative parallel algorithms for adaptive indexing, including
a second variant of a parallel standard cracking algorithm. Additionally, we
describe a hybrid parallel sorting algorithm, and a NUMA-aware method based on
sorting. We then thoroughly compare all these algorithms experimentally; along
a variant of a recently published parallel version of radix sort. Parallel
sorting algorithms serve as a realistic baseline for multi-threaded adaptive
indexing techniques. In total we experimentally compare seven parallel
algorithms. Additionally, we extensively profile all considered algorithms. The
initial set of experiments considered in this paper indicates that our parallel
algorithms significantly improve over previously known ones. Our results
suggest that, although adaptive indexing algorithms are a good design choice in
single-threaded environments, the rules change considerably in the parallel
case. That is, in future highly-parallel environments, sorting algorithms could
be serious alternatives to adaptive indexing.Comment: 26 pages, 7 figure