Cluster tails for critical power-law inhomogeneous random graphs


Recently, the scaling limit of cluster sizes for critical inhomogeneous random graphs of rank-1 type having finite variance but infinite third moment degrees was obtained (see previous work by Bhamidi, van der Hofstad and van Leeuwaarden). It was proved that when the degrees obey a power law with exponent in the interval (3,4), the sequence of clusters ordered in decreasing size and scaled appropriately converges as n goes to infinity to a sequence of decreasing non-degenerate random variables. Here, we study the tails of the limit of the rescaled largest cluster, i.e., the probability that the scaling limit of the largest cluster takes a large value u, as a function of u. This extends a related result of Pittel for the Erd\H{o}s-R\'enyi random graph to the setting of rank-1 inhomogeneous random graphs with infinite third moment degrees. We make use of delicate large deviations and weak convergence arguments.Comment: corrected and updated first referenc

    Similar works