In this paper, we study the problem of approximately computing the product of
two real matrices. In particular, we analyze a dimensionality-reduction-based
approximation algorithm due to Sarlos [1], introducing the notion of nuclear
rank as the ratio of the nuclear norm over the spectral norm. The presented
bound has improved dependence with respect to the approximation error (as
compared to previous approaches), whereas the subspace -- on which we project
the input matrices -- has dimensions proportional to the maximum of their
nuclear rank and it is independent of the input dimensions. In addition, we
provide an application of this result to linear low-dimensional embeddings.
Namely, we show that any Euclidean point-set with bounded nuclear rank is
amenable to projection onto number of dimensions that is independent of the
input dimensionality, while achieving additive error guarantees.Comment: 8 pages, International Symposium on Information Theor