We investigate the question of 'why customary macroscopic entities appear to
us humans as they do, i.e. as bounded entities occupying space and persisting
through time', starting from our knowledge of quantum theory, how it affects
the behavior of such customary macroscopic entities, and how it influences our
perception of them. For this purpose, we approach the question from three
perspectives. Firstly, we look at the situation from the standard quantum
angle, more specifically the de Broglie wavelength analysis of the behavior of
macroscopic entities, indicate how a problem with spin and identity arises, and
illustrate how both play a fundamental role in well-established experimental
quantum-macroscopical phenomena, such as Bose-Einstein condensates. Secondly,
we analyze how the question is influenced by our result in axiomatic quantum
theory, which proves that standard quantum theory is structurally incapable of
describing separated entities. Thirdly, we put forward our new 'conceptual
quantum interpretation', including a highly detailed reformulation of the
question to confront the new insights and views that arise with the foregoing
analysis. At the end of the final section, a nuanced answer is given that can
be summarized as follows. The specific and very classical perception of human
seeing -- light as a geometric theory -- and human touching -- only ruled by
Pauli's exclusion principle -- plays a role in our perception of macroscopic
entities as ontologically stable entities in space. To ascertain quantum
behavior in such macroscopic entities, we will need measuring apparatuses
capable of its detection. Future experimental research will have to show if
sharp quantum effects -- as they occur in smaller entities -- appear to be
ontological aspects of customary macroscopic entities.Comment: 28 page