Predictive Feedback Control is an easy-to-implement method to stabilize
unknown unstable periodic orbits in chaotic dynamical systems. Predictive
Feedback Control is severely limited because asymptotic convergence speed
decreases with stronger instabilities which in turn are typical for larger
target periods, rendering it harder to effectively stabilize periodic orbits of
large period. Here, we study stalled chaos control, where the application of
control is stalled to make use of the chaotic, uncontrolled dynamics, and
introduce an adaptation paradigm to overcome this limitation and speed up
convergence. This modified control scheme is not only capable of stabilizing
more periodic orbits than the original Predictive Feedback Control but also
speeds up convergence for typical chaotic maps, as illustrated in both theory
and application. The proposed adaptation scheme provides a way to tune
parameters online, yielding a broadly applicable, fast chaos control that
converges reliably, even for periodic orbits of large period