Recent observational and theoretical investigations have emphasised the
importance of filamentary networks within molecular clouds as sites of star
formation. Since such environments are more complex than those of isolated
cores, it is essential to understand how the observed line profiles from
collapsing cores with non-spherical geometry are affected by filaments. In this
study, we investigate line profile asymmetries by performing radiative transfer
calculations on hydrodynamic models of three collapsing cores that are embedded
in filaments. We compare the results to those that are expected for isolated
cores. We model the five lowest rotational transition line (J = 1-0, 2-1, 3-2,
4-3, and 5-4) of both optically thick (HCN, HCO+) as well as optically thin
(N2โH+, H13CO+) molecules using constant abundance laws. We find
that less than 50% of simulated (1-0) transition lines show blue infall
asymmetries due to obscuration by the surrounding filament. However, the
fraction of collapsing cores that have a blue asymmetric emission line profile
rises to 90% when observed in the (4-3) transition. Since the densest gas
towards the collapsing core can excite higher rotational states, upper level
transitions are more likely to produce blue asymmetric emission profiles. We
conclude that even in irregular, embedded cores one can trace infalling gas
motions with blue asymmetric line profiles of optically thick lines by
observing higher transitions. The best tracer of collapse motions of our sample
is the (4-3) transition of HCN, but the (3-2) and (5-4) transitions of both HCN
and HCO+ are also good tracers.Comment: accepted by MNRAS; 13 pages, 16 figures, 6 table