We predict that an atomic Bose-Einstein condensate strongly coupled to an
intracavity optical lattice can undergo resonant tunneling and directed
transport when a constant and uniform bias force is applied. The bias force
induces Bloch oscillations, causing amplitude and phase modulation of the
lattice which resonantly modifies the site-to-site tunneling. For the right
choice of parameters a net atomic current is generated. The transport velocity
can be oriented oppositely to the bias force, with its amplitude and direction
controlled by the detuning between the pump laser and the cavity. The transport
can also be enhanced through imbalanced pumping of the two counter-propagating
running wave cavity modes. Our results add to the cold atoms quantum simulation
toolbox, with implications for quantum sensing and metrology.Comment: Published version: 5 pages, 4 figures; Supplementary Material
include