We present an operator theoretic side of the story of squeezed states
regardless the order of squeezing. For low order, that is for displacement
(order 1) and squeeze (order 2) operators, we bring back to consciousness what
is know or rather what has to be known by making the exposition as exhaustive
as possible. For the order 2 (squeeze) we propose an interesting model of the
Segal-Bargmann type. For higher order the impossibility of squeezing in the
traditional sense is proved rigorously. Nevertheless what we offer is the
state-of-the-art concerning the topic.Comment: 21 pages; improved presentation; it has been published by Proceedings
of the Royal Society