research

Control of asymmetric Hopfield networks and application to cancer attractors

Abstract

The asymmetric Hopfield model is used to simulate signaling dynamics in gene/transcription factor networks. The model allows for a direct mapping of a gene expression pattern into attractor states. We analyze different control strategies aiming at disrupting attractor patterns using selective local fields representing therapeutic interventions. The control strategies are based on the identification of signaling bottlenecksbottlenecks, which are single nodes or strongly connected clusters of nodes that have a large impact on the signaling. We provide a theorem with bounds on the minimum number of nodes that guarantee controllability of bottlenecks consisting of strongly connected components. The control strategies are applied to the identification of sets of proteins that, when inhibited, selectively disrupt the signaling of cancer cells while preserving the signaling of normal cells. We use an experimentally validated non-specific network and a specific B cell interactome reconstructed from gene expression data to model cancer signaling in lung and B cells, respectively. This model could help in the rational design of novel robust therapeutic interventions based on our increasing knowledge of complex gene signaling networks

    Similar works