slides

Relaxation of the single-slip condition in strain-gradient plasticity

Abstract

We consider the variational formulation of both geometrically linear and geometrically nonlinear elasto-plasticity subject to a class of hard single-slip conditions. Such side conditions typically render the associated boundary-value problems non-convex. We show that, for a large class of non-smooth plastic distortions, a given single-slip condition (specification of Burgers vectors) can be relaxed by introducing a microstructure through a two-stage process of mollification and lamination. The relaxed model can be thought of as an aid to simulating macroscopic plastic behaviour without the need to resolve arbitrarily fine spatial scales.Comment: 15 page

    Similar works

    Full text

    thumbnail-image

    Available Versions