research

A sparse representation of gravitational waves from precessing compact binaries

Abstract

Many relevant applications in gravitational wave physics share a significant common problem: the seven-dimensional parameter space of gravitational waveforms from precessing compact binary inspirals and coalescences is large enough to prohibit covering the space of waveforms with sufficient density. We find that by using the reduced basis method together with a parametrization of waveforms based on their phase and precession, we can construct ultra-compact yet high-accuracy representations of this large space. As a demonstration, we show that less than 100100 judiciously chosen precessing inspiral waveforms are needed for 200200 cycles, mass ratios from 11 to 1010 and spin magnitudes 0.9\le 0.9. In fact, using only the first 1010 reduced basis waveforms yields a maximum mismatch of 0.0160.016 over the whole range of considered parameters. We test whether the parameters selected from the inspiral regime result in an accurate reduced basis when including merger and ringdown; we find that this is indeed the case in the context of a non-precessing effective-one-body model. This evidence suggests that as few as 100\sim 100 numerical simulations of binary black hole coalescences may accurately represent the seven-dimensional parameter space of precession waveforms for the considered ranges.Comment: 5 pages, 3 figures. The parameters selected for the basis of precessing waveforms can be found in the source file

    Similar works