Macroscopic fluctuation theory has shown that a wide class of non-equilibrium
stochastic dynamical systems obey a large deviation principle, but except for a
few one-dimensional examples these large deviation principles are in general
not known in closed form. We consider the problem of constructing successive
approximations to an (unknown) large deviation functional and show that the
non-equilibrium probability distribution the takes a Gibbs-Boltzmann form with
a set of auxiliary (non-physical) energy functions. The expectation values of
these auxiliary energy functions and their conjugate quantities satisfy a
closed system of equations which can imply a considerable reduction of
dimensionality of the dynamics. We show that the accuracy of the approximations
can be tested self-consistently without solving the full non- equilibrium
equations. We test the general procedure on the simple model problem of a
relaxing 1D Ising chain.Comment: 21 pages, 10 figure