research

Density and isospin asymmetry dependence of high-momentum components

Abstract

We study the one-body momentum distribution at different densities in nuclear matter, with special emphasis on its components at high momentum. Explicit calculations for finite neutron-proton asymmetry, based on the ladder self-consistent Green's function approach, allow us to access the isospin dependence of momentum distributions and elucidate their role in neutron-rich systems. Comparisons with the deuteron momentum distribution indicate that a substantial proportion of high-momentum components are dominated by tensor correlations. We identify the density dependence of these tensor correlations in the momentum distributions. Further, we find that high-momentum components are determined by the density of each sub-species and we provide a new isospin asymmetry scaling of these components. We use different realistic nucleon-nucleon interactions to quantify the model dependence of our results.Comment: 14 pages, 7 figures, 1 table. Accepted version in Phys. Rev.

    Similar works