Back in the Eighties, Heath showed that every 3-planar graph is
subhamiltonian and asked whether this result can be extended to a class of
graphs of degree greater than three. In this paper we affirmatively answer this
question for the class of 4-planar graphs. Our contribution consists of two
algorithms: The first one is limited to triconnected graphs, but runs in linear
time and uses existing methods for computing hamiltonian cycles in planar
graphs. The second one, which solves the general case of the problem, is a
quadratic-time algorithm based on the book-embedding viewpoint of the problem.Comment: 21 pages, 16 Figures. A shorter version is to appear at STACS 201