We present numerical simulations of the capacitive coupling between graphene
nanoribbons of various widths and gate electrodes in different configurations.
We compare the influence of lateral metallic or graphene side gate structures
on the overall back gate capacitive coupling. Most interestingly, we find a
complex interplay between quantum capacitance effects in the graphene
nanoribbon and the lateral graphene side gates, giving rise to an
unconventional negative quantum capacitance. The emerging non-linear capacitive
couplings are investigated in detail. The experimentally relevant relative
lever arm, the ratio between the coupling of the different gate structures, is
discussed.Comment: 8 pages, 6 figure