Task distribution offloading algorithm of vehicle edge network based on DQN

Abstract

In order to achieve the best balance between latency,computational rate and energy consumption,for a edge access network of IoV,a distribution offloading algorithm based on deep Q network (DQN) was considered.Firstly,these tasks of different vehicles were prioritized according to the analytic hierarchy process (AHP),so as to give different weights to the task processing rate to establish a relationship model.Secondly,by introducing edge computing based on DQN,the task offloading model was established by making weighted sum of task processing rate as optimization goal,which realized the long-term utility of strategies for offloading decisions.The performance evaluation results show that,compared with the Q-learning algorithm,the average task processing delay of the proposed method can effectively improve the task offload efficiency

    Similar works