research

Analogues of Lusztig's higher order relations for the q-Onsager algebra

Abstract

Let A,A∗A,A^* be the generators of the q−q-Onsager algebra. Analogues of Lusztig's r−thr-th higher order relations are proposed. In a first part, based on the properties of tridiagonal pairs of q−q-Racah type which satisfy the defining relations of the q−q-Onsager algebra, higher order relations are derived for rr generic. The coefficients entering in the relations are determined from a two-variable polynomial generating function. In a second part, it is conjectured that A,A∗A,A^* satisfy the higher order relations previously obtained. The conjecture is proven for r=2,3r=2,3. For rr generic, using an inductive argument recursive formulae for the coefficients are derived. The conjecture is checked for several values of r≥4r\geq 4. Consequences for coideal subalgebras and integrable systems with boundaries at qq a root of unity are pointed out.Comment: 19 pages. v2: Some basic material in subsections 2.1,2.2,2.3 of pages 3-4 (Definitions 2.1,2.2, Lemma 2.2, Theorem 1) from Terwilliger's and coauthors works (see also arXiv:1307.7410); Missprints corrected; Minor changes in the text; References adde

    Similar works

    Full text

    thumbnail-image

    Available Versions