We explore the impact of reionization topology on 21-cm statistics. Four
reionization models are presented which emulate large ionized bubbles around
over-dense regions (21CMFAST/ global-inside- out), small ionized bubbles in
over-dense regions (local-inside-out), large ionized bubbles around under-dense
regions (global-outside-in) and small ionized bubbles around under-dense
regions (local-outside-in). We show that first-generation instruments might
struggle to distinguish global models using the shape of the power spectrum
alone. All instruments considered are capable of breaking this degeneracy with
the variance, which is higher in outside-in models. Global models can also be
distinguished at small scales from a boost in the power spectrum from a
positive correlation between the density and neutral-fraction fields in
outside-in models. Negative skewness is found to be unique to inside-out models
and we find that pre-SKA instruments could detect this feature in maps smoothed
to reduce noise errors. The early, mid and late phases of reionization imprint
signatures in the brightness-temperature moments, we examine their model
dependence and find pre-SKA instruments capable of exploiting these timing
constraints in smoothed maps. The dimensional skewness is introduced and is
shown to have stronger signatures of the early and mid-phase timing if the
inside-out scenario is correct.Comment: 18 pages, 13 figures, updated to agree with published versio