We investigate the phase transitions of black holes with conformal anomaly in
canonical ensemble from different perspectives. Some interesting and novel
phase transition phenomena have been discovered. Firstly, we discuss the
behavior of the specific heat and the inverse of the isothermal
compressibility. It is shown that there are striking differences in Hawking
temperature and phase structure between black holes with conformal anomaly and
those without it. In the case with conformal anomaly, there exists local
minimum temperature corresponding to the phase transition point. Phase
transitions take place not only from an unstable large black hole to a locally
stable medium black hole but also from an unstable medium black hole to a
locally stable small black hole. Secondly, we probe in details the dependence
of phase transitions on the choice of parameters. The results show that black
holes with conformal anomaly have much richer phase structure than those
without it. There would be two, only one or no phase transition points
depending on the parameters we have chosen. The corresponding parameter region
are derived both numerically and graphically. Thirdly, geometrothermodynamics
are built up to examine the phase structure we have discovered. It is shown
that Legendre invariant thermodynamic scalar curvature diverges exactly where
the specific heat diverges. Furthermore, critical behaviors are investigated by
calculating the relevant critical exponents. It is proved that these critical
exponents satisfy the thermodynamic scaling laws, leading to the conclusion
that critical exponents and the scaling laws can reserve even when we consider
conformal anomaly.Comment: some new references adde