We consider the question of defining interleaving metrics on generalized
persistence modules over arbitrary preordered sets. Our constructions are
functorial, which implies a form of stability for these metrics. We describe a
large class of examples, inverse-image persistence modules, which occur
whenever a topological space is mapped to a metric space. Several standard
theories of persistence and their stability can be described in this framework.
This includes the classical case of sublevelset persistent homology. We
introduce a distinction between `soft' and `hard' stability theorems. While our
treatment is direct and elementary, the approach can be explained abstractly in
terms of monoidal functors.Comment: Final version; no changes from previous version. Published online Oct
2014 in Foundations of Computational Mathematics. Print version to appea