This paper presents a novel semantic-based phrase translation model. A pair
of source and target phrases are projected into continuous-valued vector
representations in a low-dimensional latent semantic space, where their
translation score is computed by the distance between the pair in this new
space. The projection is performed by a multi-layer neural network whose
weights are learned on parallel training data. The learning is aimed to
directly optimize the quality of end-to-end machine translation results.
Experimental evaluation has been performed on two Europarl translation tasks,
English-French and German-English. The results show that the new semantic-based
phrase translation model significantly improves the performance of a
state-of-the-art phrase-based statistical machine translation sys-tem, leading
to a gain of 0.7-1.0 BLEU points