research

Baryon Stability on the Higgs Dissolution Edge : Threshold corrections and suppression of Baryon violation in the NMSGUT

Abstract

Superheavy threshold corrections to the matching condition between matter Yukawa couplings of the effective Minimal Supersymmetric Standard Model (MSSM) and the New Minimal Supersymmetric (SO(10)) GUT(NMSGUT) provide a novel and generic mechanism for reducing the long standing and generically problematic operator dimension 5 Baryon decay rates. In suitable regions of the parameter space strong wave function renormalization of the effective MSSM Higgs doublets due to the large number of heavy fields can take the wave function renormalization of the MSSM Higgs field close to the dissolution value (ZH,H=0Z_{H,\overline{H}}=0). Rescaling to canonical kinetic terms lowers the SO(10) Yukawas required to match the MSSM fermion data. Since the same Yukawas determine the dimension 5 B violation operator coefficients, the associated rates can be suppressed to levels compatible with current limits. Including these threshold effects also relaxes the constraint ybyτysyμ y_b-y_\tau\simeq y_s-y_\mu operative between 10120\textbf{10} -\textbf{120} plet generated tree level MSSM matter fermion Yukawas yfy_f. We exhibit accurate fits of the MSSM fermion mass-mixing data in terms of NMSGUT superpotential couplings and 5 independent soft Susy breaking parameters specified at 1016.2510^{16.25}\, GeV with the claimed suppression of Baryon decay rates. As before, our s-spectra are of the mini split supersymmetry type with large A0,μ,mH,H>100|A_0|,\mu,m_{H,\overline H} > 100\,\, TeV, light gauginos and normal s-hierarchy. Large A0,μA_0,\mu and soft masses allow significant deviation from the canonical GUT gaugino mass ratios and ensure vacuum safety. Even without optimization, prominent candidates for BSM discovery such as the muon magnetic anomaly, bsγb\rightarrow s\gamma and Lepto-genesis CP violation emerge in the preferred ball park.Comment: PdfLatex. 50 pages. Version accepted for publication in Nuclear Phys.B(2014). Available online at http://dx.doi.org/10.1016/j.nuclphysb.2014.03.003. arXiv admin note: substantial text overlap with arXiv:1107.296

    Similar works