Living in the era of data deluge, we have witnessed a web content explosion,
largely due to the massive availability of User-Generated Content (UGC). In
this work, we specifically consider the problem of geospatial information
extraction and representation, where one can exploit diverse sources of
information (such as image and audio data, text data, etc), going beyond
traditional volunteered geographic information. Our ambition is to include
available narrative information in an effort to better explain geospatial
relationships: with spatial reasoning being a basic form of human cognition,
narratives expressing such experiences typically contain qualitative spatial
data, i.e., spatial objects and spatial relationships.
To this end, we formulate a quantitative approach for the representation of
qualitative spatial relations extracted from UGC in the form of texts. The
proposed method quantifies such relations based on multiple text observations.
Such observations provide distance and orientation features which are utilized
by a greedy Expectation Maximization-based (EM) algorithm to infer a
probability distribution over predefined spatial relationships; the latter
represent the quantified relationships under user-defined probabilistic
assumptions. We evaluate the applicability and quality of the proposed approach
using real UGC data originating from an actual travel blog text corpus. To
verify the quality of the result, we generate grid-based maps visualizing the
spatial extent of the various relations