The empirical shock arrival (ESA) model was developed based on quadrature
data from Helios (in-situ) and P-78 (remote-sensing) to predict the Sun-Earth
travel time of coronal mass ejections (CMEs) [Gopalswamy et al. 2005a]. The ESA
model requires earthward CME speed as input, which is not directly measurable
from coronagraphs along the Sun-Earth line. The Solar Terrestrial Relations
Observatory (STEREO) and the Solar and Heliospheric Observatory (SOHO) were in
quadrature during 2010 - 2012, so the speeds of Earth-directed CMEs were
observed with minimal projection effects. We identified a set of 20 full halo
CMEs in the field of view of SOHO that were also observed in quadrature by
STEREO. We used the earthward speed from STEREO measurements as input to the
ESA model and compared the resulting travel times with the observed ones from
L1 monitors. We find that the model predicts the CME travel time within about
7.3 hours, which is similar to the predictions by the ENLIL model. We also find
that CME-CME and CME-coronal hole interaction can lead to large deviations from
model predictions.Comment: 17 pages, 4 figures, 3 table