We consider the problem of estimating the parameters in a pairwise graphical
model in which the distribution of each node, conditioned on the others, may
have a different parametric form. In particular, we assume that each node's
conditional distribution is in the exponential family. We identify restrictions
on the parameter space required for the existence of a well-defined joint
density, and establish the consistency of the neighbourhood selection approach
for graph reconstruction in high dimensions when the true underlying graph is
sparse. Motivated by our theoretical results, we investigate the selection of
edges between nodes whose conditional distributions take different parametric
forms, and show that efficiency can be gained if edge estimates obtained from
the regressions of particular nodes are used to reconstruct the graph. These
results are illustrated with examples of Gaussian, Bernoulli, Poisson and
exponential distributions. Our theoretical findings are corroborated by
evidence from simulation studies